

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

TESTING THE HG1700 INERTIAL MEASUREMENT UNIT
FOR IMPLEMENTATION INTO THE ARIES UNMANNED

UNDERWATER VEHICLE

by

Joel Gow

June 2005

 Thesis Advisor: Anthony J. Healey
 Co-Advisor: Edward B. Thornton

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-
0188

Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2005

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Testing the HG1700 Inertial
Measurement Unit for Implementation into the ARIES
Unmanned Underwater Vehicle
6. AUTHOR(S) Joel Gow

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The ARIES Unmanned Underwater Vehicle (UUV) currently uses an Inertial

Measurement Unit (IMU) with an inherent rotation rate error bias of 10 degrees/hour.
Then need for a more accurate IMU for long term missions has led to the purchase of the
Honeywell HG1700 IMU. The HG1700 is a ring laser gyroscope designed specifically as
part of the navigation software in multiple U.S. missiles. The objective of this
research is to perform numerous bench tests on the HG1700 to test its capabilities and
to begin the process of implementing the IMU into the ARIES unmanned underwater
vehicle. Specifically, the IMU is tested for correct setup configurations, angle of
rotation accuracies, the rotation rate error bias, and positional accuracies. Also,
guidelines for integrating the IMU with the current software in the ARIES vehicle are
discussed.

15. NUMBER OF
PAGES

81

14. SUBJECT TERMS
Inertial Measurement Unit, Unmanned Underwater Vehicle, ARIES
Vehicle

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

TESTING THE HG1700 INERTIAL MEASUREMENT UNIT FOR
IMPLEMENTATION INTO THE ARIES UNMANNED UNDERWATER VEHICLE

Joel A. Gow

Ensign, United States Navy
B.S., United States Naval Academy, 2004

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN APPLIED SCIENCE
(PHYSICAL OCEANOGRAPHY)

from the

NAVAL POSTGRADUATE SCHOOL
June 2005

Author: Joel Gow

Approved by: Anthony J. Healey

Thesis Advisor

Edward B. Thornton
Co-Advisor

Mary L. Batteen
Chairman, Department of Oceanography

Donald P. Brutzman
Chair, Undersea Warfare Academic Committee

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The ARIES Unmanned Underwater Vehicle (UUV) currently

uses an Inertial Measurement Unit (IMU) with an inherent

rotation rate error bias of 10 degrees/hour. The need for a

more accurate IMU for long term missions led to the

purchase of the Honeywell HG1700 IMU. The HG1700 is a ring

laser gyroscope designed specifically as part of the

navigation software in multiple U.S. missiles. The

objective of this research is to perform numerous bench

tests on the HG1700 to test its capabilities and to begin

the process of implementing the IMU into the ARIES unmanned

underwater vehicle. Specifically, the IMU is tested for

correct setup configurations, angle of rotation accuracies,

the rotation rate error bias, and positional accuracies.

Also, guidelines for integrating the IMU with the current

software in the ARIES vehicle are discussed.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION TO RING LASER GYROSCOPES1
A. HISTORY OF THE GYROSCOPE1
B. HISTORY OF RING LASER GYROSCOPE2

1. Derivation of the Sagnac Effect3
C. HG1700 INTRODUCTION5

II. HARDWARE CONFIGURATIONS7
A. HONEYWELL TEST BOX CONFIGURATION7
B. C++ CONFIGURATION8
C. ORIENTATION OF IMU10

III. SOFTWARE USED TO TEST AND RUN THE HG1700 IMU13
A. HG1700 OUTPUT13

1. Flight Control Data13
2. Status Words and Inertial Data13
3. Summary of Output Message14

B. SOFTWARE USED TO READ HG1700 OUTPUT16
1. Test Box Software16
2. C++ Software17

IV. TESTING ON THE HG1700 IMU19
A. EXPLANATION OF TESTS19
B. ROTATION TEST19

1. MATLAB Programming for Rotation Test19
2. MATLAB Plots for Rotation Test20

C. IDLE TEST ...23
1. Calculating the Earth Rotation Rate24
2. MATLAB Programming for Idle Test28
3. Conclusions for Idle Tests30

D. POSITIONAL TESTING31
1. Derivations for Calculating Position32
2. MATLAB Programming for Positioning Tests35
3. MATLAB Plots for Positioning Tests36
4. Conclusions for Positioning Tests40

V. PLANS FOR IMPLEMENTATION43
VI. CONCLUSION ...45
LIST OF REFERENCES ..49
APPENDIX ..51

A. C++ PROGRAM DECODE4.CPP51
B. MATLAB PROGRAM IMUTEST_ROTATION.M55
C. MATLAB PROGRAM IMUTEST_IDLE##.M57

 viii

D. MATLAB PROGRAM IMUTEST_POSITION.M59
INITIAL DISTRIBUTION LIST65

 ix

LIST OF FIGURES

Figure 1. Equilateral Triangle (After Ref. [4])............3
Figure 2. Test Box Hardware................................7
Figure 3. Test Box Block Diagram...........................8
Figure 4. C++ Hardware.....................................9
Figure 5. C++ Block Diagram................................9
Figure 6. Illustrated Orientation of IMU..................10
Figure 7. Photo Orientation of IMU........................11
Figure 8. IMU Rate of Measurement and Transmission (After

Ref. [5]).......................................15
Figure 9. Rotation Test: Accelerations vs. Time...........21
Figure 10. Rotation Test: Rotation Rates vs. Time..........22
Figure 11. Rotation Test: Angular Position vs. Time........23
Figure 12. Earth Rotation..................................25
Figure 13. Shifted Earth Rotation Axis.....................26
Figure 14. X/Y Axes Rotated From N/W Directions............27
Figure 15. Translation to Reference Frame..................33
Figure 16. Euler Angle Loop................................35
Figure 17. Positioning Tests: Circular Route...............37
Figure 18. Positioning Test: Square Route..................38
Figure 19. Positioning Tests: Straight Route...............39
Figure 20. Positioning Tests: Drift Route..................40
Figure 21. SANS Navigation Software Filter (From Ref. [8]).44

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Asynchronous Flight Control and Serial Data
Interface Characteristics (From Ref. [5]).......15

Table 2. Data Message Contents (From Ref. [5])...........16
Table 3. MATLAB Output From Idle Tests...................30
Table 4. State Variables (From Ref. [8]).................43

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

This thesis could not have been completed without the

help and guidance of Professor Healey. Special thanks also

go to the Benjamin Wring, who performed all the electrical

setup for the tests, and Doug Horner, who was always

willing to lend his assistance. Finally, I would like thank

my loving fiancée, Kristen Ford, for consistently offering

support and encouragement and for understanding and

respecting the time I needed to commit to this work.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION TO RING LASER GYROSCOPES

A. HISTORY OF THE GYROSCOPE

A gyroscope is any device used to create a fixed

direction in space or measure the angular rate and position

of the platform to which it is mounted with respect to a

fixed reference frame [1]. The idea of the gyroscope

originated from the concept and observations of the

spinning top. Throughout history the top was used mainly

for entertainment, but in the late 18th century, scientists

began to notice the top for its unique balancing

capabilities. The top was first used as a navigational tool

in the 1740s by an English scientist named Serson. His idea

was to use the top in conjunction with the sextant as an

artificial horizon for ships at sea when the weather made

visibility of the true horizon impossible. Although the

experiment failed, the potential of the top continued to

grow [2].

In 1810, G.C.Bohnenberger invented the first modern

gyroscope, but since it lacked any scientific purposes, the

credit for the first gyroscope usually goes to the French

scientist Jean-Bernard-Leon Foucault. In 1852, Foucault

used a wheel mounted in gimbal rings to successfully

measure the rotation of the earth, and he was the first to

coin the term ‘gyroscope’ – a combination of the Greek

words "gyros" (revolution) and "skopein" (to see). From

that time on, the gyroscope has been used as a navigational

tool and a stabilizer in numerous platforms including

torpedoes, ships, airplanes, satellites, and unmanned

vehicles [2].

2

B. HISTORY OF RING LASER GYROSCOPE

Since its inception, the gyroscope has taken on many

forms that have deviated from the original spinning-mass

mechanical system. Out of a need to reduce the required

maintenance on such a rapidly spinning piece of equipment

and increase the production and installation times for the

original gyroscope, scientist began looking for alternative

methods to measure fixed direction and angular rate. As a

result, in 1962, Warren Macek, from the Sperry Corporation,

developed the first “gyroscope” without any moving parts:

the Ring Laser Gyroscope (RLG) [3].

The RLG’s functionality is based on the Sagnac effect,

named after the scientist who first successfully

demonstrated the effect in 1913 [4]. The Sagnac effect

holds that if two identical beams of light (equal

wavelength and phase) are sent in opposite directions

around a stationary closed path, the two beams will arrive

simultaneously at the opposite end of the enclosed path,

since the speed of light is constant. If, however, the

closed path undergoes a rotation while the light waves are

traveling along the path, then the ray traveling in the

direction of the rotation will take longer to travel around

the path than the ray traveling opposite the direction of

rotation. This time delay due to the rotation of the path

causes the two beams of light to be out of phase upon

reaching the end of the path, and this phase difference can

be measured to return the rotation rate [1]. The

mathematical derivation of the Sagnac effect can be seen

below.

1. Derivation of the Sagnac Effect

Since most RLG’s use a triangular path, the derivation

will begin with the geometric representation of an RLG

shown in Figure 1.

Figure 1. Equilateral Triangle (After Ref. [4])

Given that S is the side length, and P = 3S is the total

perimeter, then the time it takes for one beam to travel

the complete path of the triangle is

c
P

c
St ==

3

where c is the speed of light.

3

The velocity of point a, given an angular rotation rate of

w (rad/sec), is

 wRv =

Note that R is the distance from the origin of the triangle

to point a, and can be redefined as

R

S
⎟
⎠
⎞

⎜
⎝
⎛

=° 2)30cos(

3

)30sec(
2)30cos(

1
2

SSSR =°=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
°

=

Thus for a rotation rate w, point a moves a distance

3

S
c
Pw

c
Pvvtd ⎟

⎠
⎞

⎜
⎝
⎛===

The change in path length of beam 1 is simply the component

of the distance traveled by point a along the direction of

the beam path.

c

wS
c

wPSddP
2

3
322

)60cos(
2

===°=Δ

This equation can be simplified given that the area of the

triangle is defined as follows:

4

3))60sin((
2
1 2SSSA =°=

Therefore

c
wAP 2

=Δ

4

Since the path length must have an integral number of

wavelengths, P must also be defined as

 ...3,2,1== nnP λ

Thus, when the path length changes by PΔ , the wavelength

changes by

P

P
n
P Δ
=

Δ
=Δ

λλ

Likewise the frequency change can be defined as

P
P

f
f Δ

=
Δ

=
Δ

λ
λ

'
'

But since both beams experience the same frequency shift in

opposite directions, the total beat frequency is given by

 '2'2 f
P
Pff ⎟
⎠
⎞

⎜
⎝
⎛ Δ=Δ=

Finally, substituting for PΔ gives

S

wA
cS
wAff

λ
4'4

==

This equation gives the final derivation of the Sagnac

effect [4].

C. HG1700 INTRODUCTION

5

The HG1700 Inertial Measurement Unit (IMU) is an RLG

made by Honeywell International Incorporated. It is a six

Degree-of-Freedom (DOF) system with the capability to

measure acceleration, angular rotation rate, change in

velocity, and change in angle, all in a three-dimensional

coordinate reference frame. The IMU was originally made for

the Joint Direct Attack Munition (JDAM) and the Wind

Corrected Munitions Dispenser (WCMD), but it can be

modified to function in other platforms. The following

6

chapters will discuss the configurations to set up the IMU,

the software to run it, the tests done on the outputs to

confirm their accuracy, and finally the steps taken to

implement the system into the ARIES Unmanned Underwater

Vehicle (UUV).

II. HARDWARE CONFIGURATIONS

A. HONEYWELL TEST BOX CONFIGURATION

The Honeywell test box contains all the necessary

hardware components within the box to power and read

transmissions from the IMU. A Honeywell card associated

with the test box had to be installed in a CPU equipped

with Windows95, and a special 30-pin connector sent from

Honeywell had to connect the test box to the CPU. The test

box is powered through a standard 110V outlet.

Figure 2. Test Box Hardware

7

Figure 3. Test Box Block Diagram

B. C++ CONFIGURATION

The next configuration is the hardware configuration

that will be used to run the IMU when it is installed on

the ARIES vehicle. Throughout this research it will be

referred to as simply the C++ configuration because a C++

program is used to process the transmissions from the IMU.

An Ultralife battery set at 30V DC powers the IMU. The

positive voltage from the battery is run through a 2A fuse

(slow blow) before both the positive and negative voltages

are run through a Datel DC/DC converter. The converter

outputs +/-15V DC (1A) and +5V DC (5A) and a common ground.

The outputs and ground from the converter run through a 6

pin Molex connector before attaching to the IMU. A HI and

LO output from the IMU connect to a B & B Electronics 422-

to-232 converter in order to match the interface of a

computer serial port. Finally, a short ribbon cable

(straight cable) connects from the 422-to-232 converter to

the serial port.

8

Figure 4. C++ Hardware

Figure 5. C++ Block Diagram

9

C. ORIENTATION OF IMU

Now that the two different setup configurations have

been explained, it is appropriate to define the orientation

of the IMUs reference frame. The IMU was tested and will be

installed into the ARIES vehicle in the special orientation

shown in the previous two sections. Given that setup, the

positive x axis points straight ahead, the y axis points

90° to the left, and the z axis points straight up. The

rotation rates follow the left hand rule where clockwise

rotations are positive and counterclockwise rotations are

negative. For the sake of standardization, the rotation

about the x axis will be called roll, the rotation about

the y axis will be called pitch, and the rotation about the

z axis will be called yaw.

Figure 6. Illustrated Orientation of IMU

10

Figure 7. Photo Orientation of IMU

This reference frame orientation is modeled after the

output from the text box configuration with one major

modification: the y and z axes are swapped. In other words,

the output from the test box shows the y axis as pointing

straight up and the z axis as pointing 90° to the left.

This swap is done easily in the MATLAB code by renaming the

y and z vectors.

11

12

THIS PAGE INTENTIONALLY LEFT BLANK

13

III. SOFTWARE USED TO TEST AND RUN THE HG1700 IMU

A. HG1700 OUTPUT

The HG1700 used in this research is an asynchronous

model that outputs a single message at a rate of 100 Hz.

The output can be broken down into two sections, where the

first section contains all of the flight control data, and

the second section is compromised of the status words and

the inertial data.

1. Flight Control Data

The flight control data includes the angular rotation

rates along the x, y, and z axes, and the linear

accelerations in the x, y, and z directions. Each parameter

output is composed of a two-byte word, making a total of 12

bytes for the entire flight control section, and it is

measured at a rate of 600 Hz. Only every sixth flight

control message is transmitted, however, due to the 100 Hz

serial data interface. In order to get units of

radians/second, the Least Significant Bits (LSBs) of the

angular rotation rate parameters must be multiplied by a

factor of 2-20 * 600, and in order to get units of

feet/second2, the LSBs for the linear acceleration

parameters must be multiplied by a factor of 2-14 * 600 [5].

2. Status Words and Inertial Data

The second section includes two status words and the

inertial data. The inertial data is made up of the change

in angle along the x, y, and z axes, and the change in

velocity in the x, y, and z directions. The first status

word displays the accelerometer temperature in degrees

Celsius as well as an IMU pass/fail test (outputted as a 0

or 1 respectively) in a two byte word, and the second

14

status word displays individual component pass/fail test

results in a two byte word. Specifically, the second status

word includes a processor test, a memory test, an

accelerometer test, a gyro test, an “other” test, and it

also outputs the software version number. The change in

angle and change in velocity parameters are each composed

of four bytes, making a total of 28 bytes for all of the

second section. In order to get units of radians for the

change in angle parameters, the LSBs must be multiplied by

a factor of 2-33, and in order to get units of feet/second

for the change in velocity parameters, the LSBs must be

multiplied by a factor of 2-27. Unlike the flight control

data, the status words and the inertial data are measured

and transmitted at 100 Hz [5].

3. Summary of Output Message

Thus, summing up the components of the flight control

data, the status words, and the inertial data, the entire

message is made up of a 40-byte string. Before the message

is sent, however, each transmission begins with a sync byte

of A5h (or 165 in decimal format) followed by a message id

byte of 2, and after each message a 2-byte checksum is

transmitted. This means that 44 bytes are being transmitted

at 100 Hz, or 4,400 bytes/second. Converting the bytes to

bits (8 bits in a byte), the HG1700 transmits 35,200

bits/second. In order to receive all the data, the manual

states a baud rate of 115.2 kHz set at 8 data bits, 1 stop

bit, and no parity [5]. See the figures and tables below

for a graphical summary of the HG1700 output.

Figure 8. IMU Rate of Measurement and Transmission

(After Ref. [5])

Table 1. Asynchronous Flight Control and Serial Data

Interface Characteristics (From Ref. [5])

15

Table 2. Data Message Contents (From Ref. [5])

B. SOFTWARE USED TO READ HG1700 OUTPUT

Two different software packages were used to read and

evaluate transmission data from the HG1700: a test box with

the associated MS-DOS program sent from Honeywell and a C++

program written by the AUV lab.

1. Test Box Software

The Honeywell test box was used to confirm that the

HG1700 was transmitting accurate data. A MS-DOS program,

Menu_25.pif, was used to read, display, and save the

transmitted data from the test box, and it can only be run

on a Windows95 CPU. When running the program, the user must

first select one of five options: exit program, scale

outputs, display data to screen, record data to a file, or

perform noise test. For all the testing done on the test

16

17

box in this research, the option to record data to a file

was selected. Next, the user could chose to display the 600

Hz flight control data, but since the asynchronous model of

the HG1700 only transmits at 100 Hz, this option was never

selected. Finally, the user must enter the rate at which to

display and save the data, create a file name with a *.dat

extension to save the data, and enter a comment line on

that file. After the comment line is entered, the program

will begin gathering data.

If the ‘scale outputs’ option is selected, the user

can change the gyro scale factor to either one (LSB),

radians, radians/second, degrees, degrees/second, or

degrees/hour, and the user can change the acceleration

scale factor to one (LSB), feet/second2, g’s, or

meters/second2. For all of the testing done with the test

box, the gyro scale factor was set to degrees/hour, and the

acceleration scale factor was set to g’s.

The textbox worked great for short periods of testing,

but it consistently froze up after approximately two

minutes or less regardless of the rate at which the data

was displayed. Thus, the test box was useful for testing

the angular measurements in a short rotation test, but it

was impossible to do any long-term tests with the test box

to determine the error bias in the drift rate. The actual

test results for tests done with the test box will be

discussed in the next chapter.

2. C++ Software

The C++ program, DECODE4, was written only as a test

program to read saved data from a text file and output the

results to the screen and save them to a new text file. A

terminal emulation program such as Procomm Plus or

18

Hyperterminal reads in the binary data from the HG1700 and

saves it in ASCII format to a file. DECODE4 then reads the

saved file one ASCII character at a time (or one byte at a

time) searching for the sync byte followed directly by the

message id. Once it finds the 165-2 pair, the program takes

the following 40 bytes and combines them into words to get

the correct parameters in exactly the same way as discussed

in II.A.1 and II.A.2 above. After completely evaluating and

displaying one message, the program begins looking for the

next 165-2 pair and repeats the entire process. This code

can be found in the appendix.

DECODE4 will be modified and used to actually run the

IMU in the ARIES vehicle. The primary modification will be

to read the transmission from the HG1700 directly into the

program instead of reading the data from a saved file. When

making this modification however, the program must also

include a command to clear the buffer after each

transmission in order to prevent the buffer from becoming

overloaded. When the buffer can no longer hold all the

transmitted data, data will be lost, and even the loss of

one byte in a transmission will greatly skew the outputted

results. This very problem occurred during the testing in

the research and will be covered in more detail in the next

chapter.

19

IV. TESTING ON THE HG1700 IMU

A. EXPLANATION OF TESTS

Once installed, the HG1700 IMU will be used primarily

for determining initial compass heading on the ARIES

vehicle as well as tracking the heading of the vehicle

throughout its mission. Therefore, to determine the

accuracy of each of these uses, two separates tests needed

to be run and evaluated: a rotation test and an idle test.

As an added check, a third test was done to track the IMU’s

position based on the measured accelerations and angular

rotation rates, and these results will be discussed as

well.

B. ROTATION TEST

The rotation test was done using the foam mount on a

flat table with the test box and Honeywell software as

discussed and shown in chapter II. To reiterate what was

stated in that chapter, in this setting (which is the

orientation in which the IMU will be mounted in the ARIES

vehicle), the positive x axis points directly ahead, the y

axis points 90° to the left, and the z axis points straight

up. With this configuration, the goal of the rotation test

was to rotate the IMU about its z axis 90° to the right

(+90°), rotate it back to the 0° position, and then repeat

the processes in the opposite direction (to -90° and back

to 0°).

1. MATLAB Programming for Rotation Test

After gathering and saving the data from the test box,

the data output file was loaded into the MATLAB program

IMUtest_rotation.m. This m.file loads the data file and

first plots the acceleration along the three axes with

respect to time. This graph is simply a check to insure

that the z axis is reading a -1 g and the x and y axes are

reading approximately zero acceleration. Next, the program

plots the x, y, and z rotation vectors with respect to

time. Since the rotation vectors were outputted from the

IMU test box in degrees/hour, it is difficult to determine

any specific results from this plot. Therefore, the program

uses a discrete integration method to integrate the

degrees/hour data with respect to time in order to achieve

the angle of rotation at each time step. The equation for

the discrete integration is shown below:

0
_ (deg) _t n

t tt
rotation value rees rotation rate t=

=
= ×Δ∑

where
1

_
t

measured rate
Δ = . The measuring rate for this test was

10Hz. Thus, integrating the x, y, and z rotation vectors

with respect to time results in the roll, pitch, and yaw

respectively, and these values are plotted versus time in

the last plot of the program. IMUtest_rotation.m can be

seen in the appendix.

2. MATLAB Plots for Rotation Test

The following are the three plots in order as

discussed in the section above.

20

Figure 9. Rotation Test: Accelerations vs. Time

Figure 9 confirms an accurate acceleration reading

since the acceleration in the z direction reads -1 g and

the accelerations in the x and y directions read basically

0 g’s.

21

Figure 10. Rotation Test: Rotation Rates vs. Time

As discussed above, Figure 10 is difficult to

interpret precisely, but it is clear that there is first a

positive rotation rate about the z axis (clockwise), then a

negative rotation rate (counterclockwise), then another

negative rotation rate, and finally a positive rotation

rotate. These are the rotation rates expected for this

test.

22

Figure 11. Rotation Test: Angular Position vs. Time

As can be seen in Figure 11, the yaw does in fact

rotate up to 90°, back to 0°, down to -90°, and then back

to 0°. Based on this test we know that the output of the

IMU can be integrated to accurately display the heading of

the vehicle as it is carrying out its mission.

C. IDLE TEST

The second test, the idle test, proved to be much more

difficult of a test to complete. The purpose of the idle

test was to let the IMU sit motionless and run for a

certain period of time in order to determine and factor out

the drift rate caused by the rotation of the earth and

ultimately determine the error bias associated with the

HG1700 itself. The initial heading of the IMU could be

calculated from the idle test. In a tactical mission, the

23

24

idle test will be used solely to determine initial heading

since the earth rate and error bias will have been tested

and factored out of the measurements. For testing purposes,

however, the idle test was used to measure all three: earth

rotation rate, error bias, and initial heading.

The idle test was set up exactly the same as the

rotation test with the IMU sitting in the foam mount on a

flat table.

1. Calculating the Earth Rotation Rate

The rotation rate associated with the spinning of the

earth is equal to 360 degrees/day or 15 degrees/hour

counterclockwise, and since the IMU reads counterclockwise

rotations as negative, the rotation of the earth is -15

degrees/hour. When the IMU is run for a period of time

while sitting idle, the only changes to the outputted data

should be due to this earth drift rate and the error bias.

Thus, by knowing and factoring out the earth drift rate,

the error bias rate can be determined.

In order to find and filter out the earth drift rate,

the x, y and z axes must be defined in relation to the axis

of rotation of the earth. If the IMU were set facing north

or south directly on the equator, the earth drift rate

would appear only in the roll vector because both the pitch

vector and the yaw vector would be perpendicular to the

axis of rotation (only the x axis would be rotating). But

when the IMU is operating at any other latitude or any

other orientation, all three of its axes have component

vectors parallel to the axis of rotation. These drift rate

components can easily be found if the latitude and compass

heading are known. For simplicity, assume that the IMU is

facing due north (compass heading 0.00°), but at a

different latitude than the equator. This setup is

illustrated in Figure 12. (The x axis points north (N). The

y axis points west (W), and the z axis points up from the

center of the earth (U).) The angle of latitude is labeled

λ.

Figure 12. Earth Rotation

This configuration can be reduced trigonometrically to

a two-dimensional figure (Figure 13), where the axis of

rotation is shifted to the origin of the IMU, the angle of

latitude has been transferred by trigonometric identities,

and the z axis has been shifted in order to complete the N

and U components of the axis of rotation.

25

Figure 13. Shifted Earth Rotation Axis

From this figure, the following rotation equations can

be deduced:

sin
cos

e

e

U
N

λ
λ

= −Ω
= −Ω

Now assume that the IMU is at the same latitude as

before, but the heading is rotated to some angle other than

due north. This assumption is illustrated in Figure 14,

where the x and y axes are rotated clockwise (positive)

from due north and the z axis points straight up.

26

Figure 14. X/Y Axes Rotated From N/W Directions

From this figure, the rotation equation coseN λ= −Ω must be

redefined in x and y components where

cos
cos cos

x

x e

Nϖ ψ
ϖ λ ψ

=
= −Ω

and

sin

cos sin
y

y e

Nϖ ψ

ϖ λ ψ

=

= −Ω

Thus, in summary, the equations for the rotation of

the earth measured about each axis are

cos cos
cos sin

sin

x e

y e

z e

ϖ λ ψ
ϖ λ ψ

ϖ λ

= −Ω

= −Ω

= −Ω

27

2. MATLAB Programming for Idle Test

A MATLAB script file was written to display the

average rotation rate about each axis in degrees/hour

during the idle test compared to the theoretical earth

rotation rates about each axis based on the derived

equations above. The program, IMUtest_idle##.m, (##

represents the test run number) outputs eight columns of

data related to the experimental and calculated earth

rotation rates. The first 3 columns of output are the

experimental data gathered from the HG1700, and columns 4,

5, and 6 are the calculated values using the equations

derived above with a latitude of 36.5859°, a compass

heading of 0.00°, and an earth rotation rate of (-15.00

degrees/hour). The last two columns related to the earth

rotation rate are the total experimental and calculated

rotation rates, respectively, found by using the three

dimensional application of Pythagoras’ theorem:

2 2
t x y

2
zω ω ω ω= + +

After producing the eight columns related to the

earth’s rotation rate, the program outputs two more columns

related to the initial heading. Looking again at Figure 14,

the heading angle ψ can be found by taking the arctangent

of ωy/ωx. Thus, the first of these two columns is the

initial heading calculated from the experimental data, and

the second column is the initial heading calculated using

the calculated data. IMUtest_idle##.m can be seen in the

appendix.

All of the idle tests were done using the Honeywell

test box, but, as discussed in chapter III, the test box

software had a data storage problem making it impossible to

28

29

do any long-term testing with it. Seven idle tests were

done with the test box, each at a different sampling rate,

in order to try to maximize storage capacity. The results

are shown below.

IMUtest_idle4
TEST 4: 1 Hz Data Rate. Duration - 70sec
 wx_exp wy_exp wz_exp wx_cal wy_cal wz_cal wt_exp wt_cal
 -9.3419 -2.9024 -9.8148 -12.0439 0 -8.9412 13.8574 15.0000

 Computed Heading by taking ATAN of Wy/Wx
 Experiment True
 -162.7406 0

IMUtest_idle5
TEST 5: 10 Hz Data Rate. Duration - 102sec
 wx_exp wy_exp wz_exp wx_cal wy_cal wz_cal wt_exp wt_cal
-10.6108 -5.9588 -8.8306 -12.0439 0 -8.9412 15.0358 15.0000

 Computed Heading by taking ATAN of Wy/Wx
 Experiment True
 29.3176 0

IMUtest_idle6
TEST 6: 100 Hz Data Rate. Duration - 69.1sec
 wx_exp wy_exp wz_exp wx_cal wy_cal wz_cal wt_exp wt_cal
-11.4164 -2.1896 -9.9025 -12.0439 0 -8.9412 15.2705 15.0000

 Computed Heading by taking ATAN of Wy/Wx
 Experiment True
 10.8571 0

IMUtest_idle7
TEST 7: 1 Hz Data Rate. Duration - 70sec
 wx_exp wy_exp wz_exp wx_cal wy_cal wz_cal wt_exp wt_cal
-11.2792 -3.2644 -8.5668 -12.0439 0 -8.9412 14.5350 15.0000

 Computed Heading by taking ATAN of Wy/Wx
 Experiment True
 16.1413 0

IMUtest_idle8
TEST 8: .2 Hz Data Rate. Duration - 75sec
 wx_exp wy_exp wz_exp wx_cal wy_cal wz_cal wt_exp wt_cal
-10.5452 -3.7608 -8.8667 -12.0439 0 -8.9412 14.2815 15.0000

 Computed Heading by taking ATAN of Wy/Wx
 Experiment True
 19.6279 0

30

IMUtest_idle9
TEST 9: 10 Hz Data Rate. Duration - 48.2sec
 wx_exp wy_exp wz_exp wx_cal wy_cal wz_cal wt_exp wt_cal
-12.2331 -3.7360 -9.7339 -12.0439 0 -8.9412 16.0734 15.0000

 Computed Heading by taking ATAN of Wy/Wx
 Experiment True
 16.9830 0

IMUtest_idle10
TEST 10: 20 Hz Data Rate. Duration - 15.95sec
 wx_exp wy_exp wz_exp wx_cal wy_cal wz_cal wt_exp wt_cal
-10.3930 -1.0867 -8.7919 -12.0439 0 -8.9412 13.6562 15.0000

 Computed Heading by taking ATAN of Wy/Wx
 Exp (deg) True (deg)
 5.9690 0

Table 3. MATLAB Output From Idle Tests

3. Conclusions for Idle Tests

According to manufacture specifications, the error

drift rate of the HG1700 should be less than 1

degrees/hour, meaning that the experimental rotation rates

from the seven tests should range between 14.9° and 15.1°

[5]. From the seven tests, however, the total experimental

rotation rates range from 13.6562° to 16.0734° with a

standard deviation of 0.8486. Thus these seven tests prove

that over a short period of time, the HG1700 fails to meet

the expected specifications. This outcome was expected,

however, since the output from the IMU must be measured

over a long period of time (~30 minutes) in order to

accurately calculate the drift rate. Therefore, a series of

longer idle tests must be done.

Another important point to notice in the short idle

tests is the headings calculated from the experimental

data. The heading angle should read approximately 0.00°,

but in fact it ranges from -162.7406° to 29.3176°. This is

31

further proof that enough data cannot be gathered in two

minutes in order to accurately calculate the error drift

rate or the heading.

The C++ program DECODE4 should have provided the

capabilities to perform long-term tests with the IMU, but a

data acquisition problem prevented the program from ever

being able to read and display accurate information. By

analyzing the capture files from whichever terminal

emulation program was used, it was revealed that the sync

byte and the message id (165, 2) were not showing up

consistently in the data string. This seems to indicate

that at certain times the buffer was overwhelmed by bursts

of data resulting in the terminal emulation program not

being able to capture all that data [6]. This information

is good in the sense that the setup of the hardware

components is correct, but it also means that more work

needs to be done to make the software compatible at the

serial data port interface.

D. POSITIONAL TESTING

The rotation test proved that it is possible to

integrate the rate of rotation in order to get angle of

rotation, and since the IMU also measures the acceleration

along each axis, it would seem that by double integrating

the acceleration components in a constant frame of

reference, the position of the IMU could be recorded.

The positional testing involved moving the IMU along

four different routes and running the MATLAB program

IMUtest_position.m to plot the position of each track. The

four routes were as follows: a complete circle with a

radius of approximately two feet, a complete square with

the length of each side being approximately four feet, a

32

ten foot long straight line parallel to the x axis of the

constant reference frame, and a ten foot line that drifted

two feet at a constant rate off the x axis of the constant

reference frame while the IMU remained facing the constant

reference frame.

In order to derive the equations for this test, the

concept of a constant frame of reference must be explained.

When the IMU is first initialized, it is placed in a

certain direction and orientation. This configuration will

be called the initial reference frame. As the IMU is moved

and/or rotated, however, the reference frame associated

with the IMU will deviate from the initial reference frame,

but the IMU’s reference frame can always be translated back

to the initial reference frame by using the rotation and

acceleration data gathered throughout the run. When the

IMU’s reference frame is translated back to the initial

reference frame, the movement of the IMU in that reference

frame can be tracked. Thus, in order to track the position

of the IMU, the IMU’s reference frame must be translated

back to the initial reference frame. This idea of tracking

the position with respect to the initial reference frame is

know as using a constant frame of reference. The equations

and diagrams below will explain how to translate the IMU’s

reference frame back to the initial reference frame.

1. Derivations for Calculating Position

To track position, the only parameters of importance

are the accelerations along the x, y, and z axes of the

constant reference frame because these accelerations can be

double integrated with respect to time to produce position.

In order to derive these accelerations, the accelerations

associated with the IMU’s reference frame must be

translated back to the constant reference frame using

simple trigonometry.

Consider the two-dimensional figures below:

Figure 15. Translation to Reference Frame

Looking at the first figure, the angle of rotation σ

is marked negative because of the counterclockwise rotation

about the z axis of the IMU. If x1 and y1 are acceleration

vectors in this figure, and all of the vectors point in the

positive direction, then the components of x1 and y1 can be

related back to xo and yo by the equations

() ()
() (

0 1 1

0 1 1

() ()cos ()sin

() ()cos ()sin

accel x accel x accel y

accel y accel y accel x)
σ σ

σ σ

= − +

= − −

−

−

Likewise, in the second figure the angle of rotation σ is

positive since the rotation is in the clockwise direction.

Because of the sign change on the angle, the equations to

33

relate x1 and y1 back to xo and yo are exactly the same. And

since all of the positioning tests were done in the x-y

plane (no change in z), these two equations will suffice.

For situations in which the IMU is rotated about more

than one axis, the rotation rates must be converted to

Euler rotation rates before being integrated into angles

(Euler angles). Even though the positioning tests only

involved rotations about the z axis, the method of

calculating the Euler angles was used to ensure that the

correct roll, pitch, and yaw angles were being recorded and

to simply become familiar with the method since it must be

used when the IMU is implemented into the ARIES vehicle.

The rotation rates transmitted from the IMU can be

converted to Euler rotation rates by the transformation

matrix

1 sin tan cos tan
0 cos sin
0 sin / cos cos / cos

p
q
r

φ φ θ φ θ
θ φ φ
ψ φ θ φ θ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

where p, q, and r are the transmitted rotation rates about

the x, y, and z axes respectively, and φ , θ , and ψ are the

roll, pitch and yaw respectively [7]. The specifics as to

how this transformation matrix must be implemented into

MATLAB will be discussed later in this section.

Once the acceleration components have been translated

to the constant reference frame, the acceleration along the

x and y axes must be double integrated to get position

along these axes. Integrating once yields

1 0adt at c at v v= + = + =∫

34

and a second integration yields

1 0vdt vt c vt x x= + = + =∫

Now, converting the integral to a discrete integration

form,

1 11
() i n

i ii
v n a t v=

− −=
= Δ +∑

and

1 11
() i n

i ii
x n v t=

− −=
= Δ +∑ x

These derivations provide enough background to now

sufficiently discuss the MATLAB programming results.

2. MATLAB Programming for Positioning Tests

The equations derived above were used in the program

IMUtest_position.m to first derive the Euler angles, then

calculate the acceleration vectors in the constant frame of

reference, and finally integrate the acceleration vectors

twice to get an x and y position at each time interval.

Specifically, Figure 16 below shows the loop used to

calculate the Euler angles at each time interval.

Figure 16. Euler Angle Loop

35

The rotation rates from the IMU are multiplied by the

transformation matrix to get the Euler rotation rates.

These rotation rates are then integrated to get the Euler

angles, and the Euler angles are fed back into the

36

transformation matrix in order to calculate the Euler

rotation rates at the next time interval. This loop is

similar to the loop that will be used when the IMU is

implemented into the ARIES vehicle, with the only

difference being that the rotation of the earth will be

factored out of the initial rotation rates before they are

multiplied by the transformation matrix. Since all of these

position tests were less than one minute in duration,

however, it was not necessary to factor out the rotation of

the earth. After the Euler angles have all been calculated,

the program then translates the acceleration vectors back

to the constant reference frame and double integrates to

get position.

3. MATLAB Plots for Positioning Tests

IMUtest_position.m displays two plots per route. The

first plot is a plot of the roll, pitch, and yaw versus

time in order to confirm that the Euler angles were

calculated correctly. The second plot is the primary plot

of interest for this test: the actual track of the IMU as

integrated from the accelerometers. These plots are shown

in the figures below. IMUtest_position.m is given in the

appendix.

Figure 17. Positioning Tests: Circular Route

The circular test shows that the Euler angles have

been calculated correctly (Figure 17, upper panel). The

roll and pitch remain at approximately 0° while the yaw

changes gradually from 0° to -360° indicating a circular

pattern. However, the track obtained from double

integration of the accelerometers deviates greatly from a

circular track (Figure 17, lower panel). It appears that

the IMU failed to measure accurate acceleration values

throughout the route.

37

Figure 18. Positioning Test: Square Route

 The plots from the square test (Figure 18) show

similar results. Again, the square test shows an accurate

output of Euler angles. The roll and pitch stay at

approximately 0° while the yaw decreases in a stair step

pattern from 0° to -360° indicating a square pattern. Like

the circular test, though, the square test failed to plot

an accurate route.

38

Figure 19. Positioning Tests: Straight Route

The straight line test shows very little change in the

roll, pitch, and yaw, as expected, and, consistent with the

previous tests, the position plot in greatly skewed (Figure

19).

39

Figure 20. Positioning Tests: Drift Route

 The drift test was designed to see if the IMU could

measure the effects of the ocean currents during a mission.

Based on the results shown in Figure 20, however, it is

clear that such a capability does not exist. The drift test

displays the same results as the other tests: accurate

Euler angles with an extremely inaccurate position plot.

4. Conclusions for Positioning Tests

Based on the results from these four figures, it is

obvious that the HG1700 cannot be used to track its

position at very low accelerations. The reason for this is

that first, each of the accelerometers in the IMU has an

error bias associated with it. When you double integrate

the acceleration to get position, the error bias integrates

as well, causing the error in the accelerometers to grow at

40

41

an exponential rate over time. Thus in a very short amount

of time, the error bias begins to dominate the data.

Second, when translating the acceleration vectors to a

constant frame of reference, the translated vectors are

often smaller than the noise in the vectors, causing a very

wide standard deviation for a very small acceleration

value. Third, if the x and y axes of the IMU are not

oriented exactly perpendicular to gravity, components of

the acceleration due to gravity will appear in the x and/or

y acceleration vectors. All these reasons combine to

explain why the IMU at low accelerations fails to produce

accurate positioning data.

42

THIS PAGE INTENTIONALLY LEFT BLANK

V. PLANS FOR IMPLEMENTATION

When the HG1700 is implemented into the ARIES vehicle,

it should incorporate the same filter used in the Small AUV

Navigation System (SANS) software. The SANS requires a

GPS/DGPS receiver, IMU, compass, water speed sensor, water

depth sensor, and a data processing computer - all of

which are found on the ARIES vehicle. The current SANS

navigation software uses the twelve-state complementary

filter shown in Figure 21. The twelve state variables are

as follows: the outputs of the three integrator blocks,

estimated current in both the north and east directions,

and the error bias estimates for the angular rate readings.

A more detailed list of these state variables is shown in

Table 4. Note also that in Figure 21, (, ,)R φ θ ψ is a rotation

matrix and (, ,)T φ θ ψ is an Euler transformation matrix [8].

Table 4. State Variables (From Ref. [8])

43

Figure 21. SANS Navigation Software Filter (From Ref.

[8])

The filter gains K1, K2, K3, and K4 and constant. They

must initially be determined by bandwidth considerations,

but they can be modified and corrected afterwards by

experimental tuning. For more information on how to tune

the filter gains, see [8]. The only change needed to be

made to the SANS software is to filter out the rotation of

the Earth from the Angular-rate Sensors (p, q, r) using the

equations discussed in section IV.C.1.

44

45

VI. CONCLUSION

It was the objective of this thesis to evaluate the

accuracy of the HG1700 in order to determine its usefulness

as part of the navigational components in the ARIES

vehicle, and that goal was met in multiple categories.

First, this thesis allowed for the two different setup

configurations associated with the IMU to be examined.

Second, through the rotation test, the idle test, and the

positioning test, the inertial data from the IMU was

evaluated for accuracy and consistency. And finally, this

thesis showed the need for specific further evaluation, and

the necessary steps to be taken when implementing the IMU

into the UUV. While not everything is this thesis can be

called successful, it certainly was useful and should be

viewed as a necessary stepping stone in the process of

implementing the HG1700 into the ARIES vehicle.

Throughout all the testing done on the IMU, the

capabilities and difficulties related to the test box and

C++ setup were examined. The test box proved useful for

testing the IMU, only because the C++ setup never worked

properly, but it still had two major limitations. First,

the test box could only run on a Windows95 CPU, which

prevented the mobility of testing on a laptop computer. And

second, the test box software could not store more than two

minutes worth of data regardless of the rate at which the

data was displayed. This fact was shown especially true in

the idle tests. The C++ software and setup has worked in

the past, but due to problems with the serial data

acquisition it never displayed accurate data during the

testing time period for this research. Before the IMU can

46

be implemented into the vehicle, this problem must be

corrected because long term testing must still be done and

also because a similar setup and software will be used for

the IMU when it operates on the ARIES vehicle.

In the rotation test, the accuracy of the rotation

rates was tested and the ability to be able to integrate

those rotation rates to get angles was evaluated. This test

proved successful in that the IMU measured accurate

rotation rates and those rates were integrated to reflect

accurate angle measurements. Therefore, the IMU can and

certainly will be used to measure the heading of the ARIES

vehicle once it is installed. It must be remembered,

however, that when the IMU is implemented into the vehicle,

the earth rates must be factored out of the measured

rotation rates, and then those rotation rates must be

transformed to Euler rates before integrating into angle

measurements.

In the idle test, the measured earth rates and error

bias were examined. These tests had limited success due to

the memory storage error associated with the test box setup

and the data acquisition problems associated with the C++

setup. The short term testing done with the test box proved

that neither the Earth rate, nor the error bias, nor the

compass heading could be accurately measured in a short

period time. Thus, the limited results from these tests

necessitate a long term test in order to factor out an

accurate earth rate measurement and to calculate the

inherent error bias associated with the IMU. The accuracy

of the calculated compass heading must also be checked in a

long term test.

47

The positioning tests assessed the accuracy of double

integrating the acceleration vectors in a constant frame of

reference to get the position of the IMU at each discrete

time step. These tests were successful in transforming the

transmitted rotation rates to Euler rates, but other than

that they were largely unsuccessful. They failed the

primary purpose of the test: to produce an accurate two

dimensional plot of the position of the IMU. Based on the

results of this test, the position of the ARIES vehicle

cannot be evaluated solely by the HG1700 nor can the IMU be

used to measure the ocean currents. When used with the SANS

navigation software filter, however, the IMU can be used to

assist in the measurement of the velocity and acceleration

of the vehicle.

As stated already, before the IMU can be implemented,

the C++ setup must be debugged and sufficient long term

testing must be done. When implementing the IMU, it should

be incorporated with the SANS twelve-state complementary

filter or something similar to it, and the C++ program

DECODE4 must be modified to read the transmissions directly

from the IMU. These are the necessary evaluations and

modifications still needing attention before

implementation.

 Based on all these conclusions, this thesis has made

great strides in taking an IMU designed for the high speed

JDAM missile and installing it onto the slow moving ARIES

UUV, but the process is far from complete. The test results

have been made clear and the outline for future work well

defined. With that, this thesis is concluded with the hope

that it will be used as a guide for follow-on work to

complete the implementation process.

48

THIS PAGE INTENTIONALLY LEFT BLANK

49

LIST OF REFERENCES

[1] “Gyroscope.” McGraw-Hill Encyclopedia of Science and
Technology. Vol. 8. 2002 ed.

[2] “Brief History of Gyroscopes.” <http://einstein.stanf
ord.edu/content/education/EducatorsGuide/Page30.html>
19 FEB 2005.

[3] “Heading Sensors.” <http://www.eng.yale.edu/ee-
labs/morse/other/pos96ch2.pdf> 19 FEB 2005.

[4] Sharp, James. “Laser Gyroscopes.”
<http://www.mech.gla.ac.uk/~sharpj/lectures/lasers/not
es/laser_gyro.pdf> 19 FEB 2005.

[5] “Critical Item Development Specification HG1700AG
Inertial Measurement Unit – Asynchronous Serial
Protocol” Honeywell International Inc., 2002.

[6] Dobrokhodov, Vladimir. Personal Interview on Serial
Data Acquisition Problems. Monterey, CA. 08 JUN 2005.

[7] Healey, Tony. “Dynamics and Control of Mobile Robotic
Vehicles.” Class Notes, Naval Postgraduate School.
Monterey, CA. Winter 2001.

[8] Bachmann, E. R., Healey, A. J., Knapp, R.G., McGhee,
R. B., Roberts, R. L., Whalen, R. H., Yun, X., Zyda,
M. J., "Testing and Evaluation of an Integrated
GPS/INS System for Small AUV Navigation" IEEE Journal
of Oceanic Engineering, Vol. 24, No. 3, July 1999.

50

THIS PAGE INTENTIONALLY LEFT BLANK

51

APPENDIX

A. C++ PROGRAM DECODE4.CPP

/* DECODE4.cpp
 This program reads binary data from a text file and outputs the
14 measurements that the HG1700 IMU transmits with each message */

#include<stdio.h>
#include<stdlib.h>

/* Processes word1.
 Format of word1 is:
 bits 15-8: Accelerometer temperature (centigrade)
 bit 7: a axis RLG in PLC reset (=1)
 bit 6: b axis RLG in PLC reset (=1)
 bit 5: c axis RLG in PLC reset (=1)
 bit 4: IMU failure
 bits 0-3: 4-bit counter*/

/* Output format is (IMU pass/fail, temperature (Celsius degrees),
counter (0-15) */

char word1(double decimal)
{ int bitvalue=32768, bitnumber=15, counter=0, bit=0, temperature=0;
 char test;

while(bitnumber>=0) //scans and processes individual bits
 { if((decimal-bitvalue)>=0)
 { bit=1;
 decimal=decimal-bitvalue;
 if(bitnumber<=3)
 counter = counter + bitvalue;
 else if(bitnumber==4)
 test = 70;
 else if(bitnumber>=8)
 temperature = temperature+bitvalue/256;
 else;
 }else
 if(bitnumber==4)
 test = 80;
 else;
 bitnumber = bitnumber - 1;
 bitvalue = bitvalue/2;
 }
 printf("(%c, %d, %d)\t",test,temperature,counter);

 return test; // SPK 5/24/05: added to make this compile
}

52

/* Processes word2.
 Format of word2 is:
 bits 7-0: software version number
 bits 8-10: reserved
 bits 11-15: process tests */

/* Tests (0=pass, 1=fail):
 bit 15: Processor
 bit 14: Memory
 bit 13: Other
 bit 12: Accelerometer
 bit 11: Gyroscope */

/* Output format: If all tests pass: "Pass [version number]"; if
test(s) failed: "Fail: [process]" */
void word2(double decimal)
{ double error=0;
 int bitvalue=32768, version=0, bit=0, temperature=0;
 char bitnumber=15;

while(bitnumber>=0) scans and processes individual bits
 { if((decimal-bitvalue)>=0)
 { bit=1;
 decimal=decimal-bitvalue;
 if(bitnumber<=7)
 version = version + bitvalue;
 else
 error = error + bitvalue;
 }else;
 bitnumber = bitnumber - 1;
 bitvalue = bitvalue/2;
 }
 if(error==0) // read test output and display results to screen
 printf("(Pass %d)\t",version);
 else if(error==32768)
 printf("(Fail: Processor)\t");
 else if(error==16384)
 printf("(Fail: Memory)\t");
 else if(decimal==8192)
 printf("(Fail: Other)\t");
 else if(error==4096)
 printf("(Fail: Accel)\t");
 else if(error==2048)
 printf("(Fail: Gyro)\t");
 else
 printf("(Fail: Multi.)\t");
}

FILE *IMUfp;
FILE *SAVEfp;

void main()
{ unsigned char bytevalue;
 int i=0, count=0, size;
 char filename[64], savename[64];
 double lsb, value;

53

 const double lsb1=0.00057220458984375, lsb2=0.03662109375,
lsb3=0.000000000116415321826934814453125,
lsb4=0.000000007450580596923828125;
/*(least significant bit (LSB) values according to unit spec. sheet)*/

 system("cls");
 printf("\n************************************\n** Set Screen
buffer width to 300 **\n************************************\n");
 printf("\nPossible data files in current directory:\n\n");
 system("dir *.cap /od /b"); // Possible file extensions
 system("dir *.txt /od /b"); // to display to screen
 printf("\nChoose a data file to view: ");
 scanf("%s",&filename); // Selected file to view
 printf("Output file name: ");
 scanf("%s",&savename); // Selected file to save
 printf("Enter number of data segments: ");
 scanf("%d",&size);

printf("Filename: %s Number of data segments:
%d\n\n",filename,size);

printf("Angular Rate X\tAngular Rate Y\tAngular Rate Z\tLinear

accel X\tLinear accel Y\tLinear accel Z\tStatus Word1\tStatus
Word2\tDelta angle X\tDelta angle Y\tDelta angle Z\tDelta vel X\tDelta
vel Y\tDelta vel Z\n");

 printf(" (rad/sec)\t (rad/sec)\t (rad/sec)\t (ft/sec^2)\t
(ft/sec^2)\t (ft/sec^2)\t(P/F, deg.C)\t (Pass/Fail)\t (radians)\t
(radians)\t (radians)\t (ft/sec)\t (ft/sec)\t (ft/sec)\n\n");

 SAVEfp = fopen(savename,"wb");
 IMUfp = fopen(filename,"rb");
 while(count<size) // Constant loop looking for (165,2) combo
 { fread(&bytevalue,1,1,IMUfp);
 printf("%d\n",bytevalue);
 if(bytevalue==165) //finds sync. byte/message id (165, 2)
 { fread(&bytevalue,1,1,IMUfp);
 if(bytevalue==2)
 { while(i<40) // evaluates next 40 bytes
 { fread(&bytevalue,1,1,IMUfp); // Combines bytes
 value = bytevalue;
 ++i;
 fread(&bytevalue,1,1,IMUfp);
 value = value + 256*bytevalue;
 ++i;
 if(i>=18)
 { fread(&bytevalue,1,1,IMUfp);
 value = value + 256*256*bytevalue;
 ++i;
 fread(&bytevalue,1,1,IMUfp);
 value = value + 256*256*256*bytevalue;
 ++i;
 if(value>=2147483648)
 value = value - 2147483648 - 2147483648;
 }else
 if(value>=32768)
 value = value - 65536;
 else;

54

 if(i<=6) //applies lsb values
 value = value*lsb1;
 else if(i<=12)
 value = value*lsb2;
 else if(i<=14); //word1
 else if(i<=16); //word2
 else if(i<=28)
 value = value*lsb3;
 else if(i<=44)
 value = value*lsb4;
 else;

 if(i==14)
 word1(value); // Calls word1 function
 else if(i==16)
 word2(value); // Calls word2 function
 else
 { printf("%f\t",value);
 fprintf(SAVEfp,"%f ",value);
 }
 }

 printf("\n");
 fprintf(SAVEfp,"\r\n");
 ++count;
 i=0;
 }else;
 }else;
 }
}

55

B. MATLAB PROGRAM IMUTEST_ROTATION.M

% IMUtest_rotation.m
% This progam integrates the rotation rates to get angle of rotation.
% It also plots the accelerations vs. time, the rotation rates vs.
% time, and the angle of rotation vs. time.
% 042105
% Joel Gow

clear all

test1 = load('042105_02mod.txt'); % 10Hz test

%/////////////////// Rotation Test \\\\\\\\\\\\\\\\\\\\\\\
t1 = 0:0.1:42.9; % Time vector in seconds

% Plot accelerations vs. time
figure(1)
plot(t1,test1(:,1),'-') % aX
hold on
plot(t1,test1(:,3),'-.') % aY
plot(t1,test1(:,2),':') % aZ
title('Test1: Acceleration in the X,Y, and Z directions')
xlabel('Time (sec)')
ylabel('Acceleration (g)')
legend('X axis','Y axis','Z axis')

% Plot rotation rates vs. time
figure(2)
plot(t1,test1(:,4),'-') % rotation about x
hold on
plot(t1,test1(:,6),'-.') % rotation about y
plot(t1,test1(:,5),':') % rotation about z
title('Test1: Rotation about the X,Y, and Z axes')
xlabel('Time (sec)')
ylabel('Rotation (deg/hr)')
legend('Roll','Pitch','Yaw')

%//////////////////// Calculations \\\\\\\\\\\\\\\\\\\\
angular_position(1) = 0; % initialize angular position
tO = 0.1/3600; % time step (hrs)
for i=1:430
 integral_stepPitch(i) = test1(i,6)*tO; % integrate each time step
 integral_stepRoll(i) = test1(i,4)*tO;
 integral_stepYaw(i) = test1(i,5)*tO;

 angular_positionPitch(i) = sum(integral_stepPitch); % sum steps
 angular_positionRoll(i) = sum(integral_stepRoll);
 angular_positionYaw(i) = sum(integral_stepYaw);
end

56

% Plot angle of rotation vs. time
figure(3)
plot(t1,angular_positionRoll,'-')
hold on
plot(t1,angular_positionPitch,'-.')
plot(t1,angular_positionYaw,':')
title('Angular Position vs. Time')
xlabel('Time (sec)')
ylabel('Pitch Angle (degrees)')
legend('Roll','Pitch','Yaw')

% Plot lines at +/- 90 degrees for check
for i = 1:430
 y1(i) = 90;
 y2(i) = -90;
end

plot(t1,y1,'--')
plot(t1,y2,'--')

57

C. MATLAB PROGRAM IMUTEST_IDLE##.M

% IMUtest_idle4.m
% This program measures rotation rates over time compares with known
% earth rotation rates
% 042105
% Joel Gow

clear all

% These are the only inputs that change from each idle test
test1 = load('042105_04mod.txt'); % 1Hz test

file_length = 70; % Length of file in seconds
rate = 1; % Period of each time step

%/////////////////// Test 1 \\\\\\\\\\\\\\\\\\\\\\\

t1 = 0:1/rate:(file_length - 1)/rate; % Create time vector (sec)

% Plot acceleration vs. time
figure(1)
plot(t1,test1(:,1),'g')
hold on
plot(t1,test1(:,3),'r')
plot(t1,test1(:,2),'b')
title('Test1: Acceleration in the X,Y, and Z directions')
xlabel('Time (sec)')
ylabel('Acceleration (g)')
legend('X axis','Y axis','Z axis')

% Plot rotation rates vs. time
figure(2)
plot(t1,test1(:,4),'g')
hold on
plot(t1,test1(:,6),'r')
plot(t1,test1(:,5),'b')
title('Test1: Rotation about the X,Y, and Z axes')
xlabel('Time (sec)')
ylabel('Rotation (deg/hr)')
legend('Roll','Pitch','Yaw')

wx = test1(:,4); % Rotation rate vector about x
wy = test1(:,6); % Rotation rate vector about y
wz = test1(:,5); % Rotation rate vector about z

% mean values for rotation rates
wx_exp = mean(wx);
wy_exp = mean(wy);
wz_exp = mean(wz);

58

% Total experimental rotation rate
w_total_exp = sqrt(wx_exp^2 + wy_exp^2 + wz_exp^2);

lat = 36.5896; % Latitude in degrees
we = 15; % Earth's rotation rate in degrees/hour
N_offset = 0; % IMU heading in degrees

% Calculate earth rotation rates about x, y, and z axes
wx_cal = -we*cos(lat*pi/180)*cos(N_offset*pi/180);
wy_cal = -we*cos(lat*pi/180)*sin(N_offset*pi/180);
wz_cal = -we*sin(lat*pi/180);

% Total calculated rotation rate
w_total_cal = sqrt(wx_cal^2 + wy_cal^2 + wz_cal^2);

% Display data to screen
disp('TEST 4: 1 Hz Data Rate. Duration - 70sec')
disp(' wx_exp wy_exp wz_exp wx_cal wy_cal wz_cal
wt_exp wt_cal')
disp([wx_exp wy_exp wz_exp wx_cal wy_cal wz_cal w_total_exp
w_total_cal])

disp(' ')
disp(' Computed Heading by taking ATAN of Wy/Wx')
disp(' Experiment True')

% Calculate heading
heading = atan2(wy_exp,wx_exp)*180/pi;
heading_check = atan(wy_cal/wx_cal)*180/pi;

% Display data to screen
disp([heading heading_check])

59

D. MATLAB PROGRAM IMUTEST_POSITION.M

% IMUtest_position.m
% This program double integrates the acceleration vectors in the x
% and y axes to get position, and it plots the results.
% 04APR05
% Joel Gow

clear all

% Test one had corrupted data. Only test 2-5 were used.

test2 = load('040605_07mod.txt'); % 10Hz circular path test
test3 = load('040605_09mod.txt'); % 10Hz square path test
test4 = load('040605_11mod.txt'); % 10HZ straight path test
test5 = load('040605_12mod.txt'); % 10HZ drift path test

% Initial Variables
tOs = 0.1; % Time step for 10Hz = 0.1 second
tOh = 0.1/3600; % Convert time step to hours
g = 32.2; % Force of gravity in ft/sec^2
rad = pi/180; % conversion factor for degrees to radians

% ///////////////// Test 2 \\\\\\\\\\\\\\\\\\\
% Circular Path Test
t2 = 0:.1:22.4; % Length of test 2 in seconds

% Acceleration vectors
aX = test2(:,1)*g;
aY = test2(:,3)*g;
aZ = test2(:,2)*g;

% Initialize angle of rotation values
Roll2(1) = 0;
Pitch2(1) = 0;
Yaw2(1) = 0;

% Calculate Euler angles
for i = 1:224
 % Transformation matrix
 T = [1 sin(Roll2(i)*rad)*tan(Pitch2(i)*rad)
cos(Roll2(i)*rad)*tan(Pitch2(i)*rad); 0 cos(Roll2(i)*rad) -
sin(Roll2(i)*rad); 0 sin(Roll2(i)*rad)/cos(Pitch2(i)*rad)
cos(Roll2(i)*rad)/cos(Pitch2(i)*rad)];

 % Euler rotation rates
 Euler_angle = T*[test2(i,4); test2(i,6); test2(i,5)];
 Ex = Euler_angle(1);
 Ey = Euler_angle(2);
 Ez = Euler_angle(3);

 % Integrate rotation rates to get angles
 Roll2(i+1) = Ex*tOh + Roll2(i);
 Pitch2(i+1) = Ey*tOh + Pitch2(i);

60

 Yaw2(i+1) = Ez*tOh + Yaw2(i);
end

figure(1)

% Plot angular position vs. time
subplot(2,1,1)
plot(t2,Roll2,'-')
hold on
plot(t2,Pitch2,'-.')
plot(t2,Yaw2,':')
title('Circular Test: Angular Position vs. Time')
xlabel('Time (sec)')
ylabel('Pitch Angle (degrees)')
legend('Roll','Pitch','Yaw')

% Transfer acceleration vectors to constant reference frame
net_aX = aX'.*cos(Yaw2*rad) + aY'.*sin(Yaw2*rad);
net_aY = -aX'.*sin(Yaw2*rad) + aY'.*cos(Yaw2*rad);

% Initialize position and velocity values
pX2(1) = 0;
pY2(1) = 0;
vX2 = 0;
vY2 = 0;

% get position by double integration of acceleration
for i=2:225
 vX2 = vX2 + net_aX(i-1)*tOs;
 vY2 = vY2 + net_aY(i-1)*tOs;

 pX2(i) = pX2(i-1) + vX2*tOs;
 pY2(i) = pY2(i-1) + vY2*tOs;
end

% Plot track of IMU
subplot(2,1,2)
plot(pX2,pY2)
title('Circular Test: 2D XY Plot')
xlabel('X position (ft)')
ylabel('Y position (ft)')
grid

% ///////////////// Test 3 \\\\\\\\\\\\\\\\\\\
% Square Path Test
t3 = 0:.1:37.2; % Length of test 3 in seconds

% Acceleration vectors
aX3 = test3(:,1)*g;
aY3 = test3(:,3)*g;
aZ3 = test3(:,2)*g;

61

% Initialize angle of rotation values
Roll3(1) = 0;
Pitch3(1) = 0;
Yaw3(1) = 0;

% Calculate Euler angles
for i = 1:372
 % Transformation matrix
 T = [1 sin(Roll3(i)*rad)*tan(Pitch3(i)*rad)
cos(Roll3(i)*rad)*tan(Pitch3(i)*rad); 0 cos(Roll3(i)*rad) -
sin(Roll3(i)*rad); 0 sin(Roll3(i)*rad)/cos(Pitch3(i)*rad)
cos(Roll3(i)*rad)/cos(Pitch3(i)*rad)];

 % Euler rotation rates
 Euler_angle = T*[test3(i,4); test3(i,6); test3(i,5)];
 Ex = Euler_angle(1);
 Ey = Euler_angle(2);
 Ez = Euler_angle(3);

 % Integrate rotation rates to get angles
 Roll3(i+1) = Ex*tOh + Roll3(i);
 Pitch3(i+1) = Ey*tOh + Pitch3(i);
 Yaw3(i+1) = Ez*tOh + Yaw3(i);
end

figure(2)

% Plot angular position vs. time
subplot(2,1,1)
plot(t3,Roll3,'-')
hold on
plot(t3,Pitch3,'-.')
plot(t3,Yaw3,':')
title('Square Test: Angular Position vs. Time')
xlabel('Time (sec)')
ylabel('Pitch Angle (degrees)')
legend('Roll','Pitch','Yaw')

% Transfer acceleration vectors to constant reference frame
net_aX3 = aX3'.*cos(Yaw3*rad) + aY3'.*sin(Yaw3*rad);
net_aY3 = -aX3'.*sin(Yaw3*rad) + aY3'.*cos(Yaw3*rad);

% Initialize position and velocity values
pX3(1) = 0;
pY3(1) = 0;
vX3 = 0;
vY3 = 0;

% get position by double integration of acceleration
for i=2:373
 vX3 = vX3 + net_aX3(i-1)*tOs;
 vY3 = vY3 + net_aY3(i-1)*tOs;

62

 pX3(i) = pX3(i-1) + vX3*tOs;
 pY3(i) = pY3(i-1) + vY3*tOs;
end

% Plot track of IMU
subplot(2,1,2)
plot(pX3,pY3)
title('square Test: 2D XY Plot')
xlabel('X position (ft)')
ylabel('Y position (ft)')
grid

% ///////////////// Test 4 \\\\\\\\\\\\\\\\\\\
% Staight Path Test
t4 = 0:.1:16.4; % Length of test 4 in seconds

% Acceleration vectors
aX4 = test4(:,1)*g;
aY4 = test4(:,3)*g;
aZ4 = test4(:,2)*g;

% Initialize angle of rotation values
Roll4(1) = 0;
Pitch4(1) = 0;
Yaw4(1) = 0;

% Calculate Euler angles
for i = 1:164
 % Transformation matrix
 T = [1 sin(Roll4(i)*rad)*tan(Pitch4(i)*rad)
cos(Roll4(i)*rad)*tan(Pitch4(i)*rad); 0 cos(Roll4(i)*rad) -
sin(Roll4(i)*rad); 0 sin(Roll4(i)*rad)/cos(Pitch4(i)*rad)
cos(Roll4(i)*rad)/cos(Pitch4(i)*rad)];

 % Euler rotation rates
 Euler_angle = T*[test4(i,4); test4(i,6); test4(i,5)];
 Ex = Euler_angle(1);
 Ey = Euler_angle(2);
 Ez = Euler_angle(3);

 % Integrate rotation rates to get angles
 Roll4(i+1) = Ex*tOh + Roll4(i);
 Pitch4(i+1) = Ey*tOh + Pitch4(i);
 Yaw4(i+1) = Ez*tOh + Yaw4(i);
end

figure(3)

% Plot angular position vs. time
subplot(2,1,1)
plot(t4,Roll4,'-')

63

hold on
plot(t4,Pitch4,'-.')
plot(t4,Yaw4,':')
title('Straight Line Test: Angular Position vs. Time')
xlabel('Time (sec)')
ylabel('Pitch Angle (degrees)')
legend('Roll','Pitch','Yaw')

% Transfer acceleration vectors to constant reference frame
net_aX4 = aX4'.*cos(Yaw4*rad) + aY4'.*sin(Yaw4*rad);
net_aY4 = -aX4'.*sin(Yaw4*rad) + aY4'.*cos(Yaw4*rad);

% Initialize position and velocity values
pX4(1) = 0;
pY4(1) = 0;
vX4 = 0;
vY4 = 0;

% get position by double integration of acceleration
for i=2:165
 vX4 = vX4 + net_aX4(i-1)*tOs;
 vY4 = vY4 + net_aY4(i-1)*tOs;

 pX4(i) = pX4(i-1) + vX4*tOs;
 pY4(i) = pY4(i-1) + vY4*tOs;
end

% Plot track of IMU
subplot(2,1,2)
plot(pX4,pY4)
title('Straight Line Test: 2D XY Plot')
xlabel('X position (ft)')
ylabel('Y position (ft)')
grid

% ///////////////// Test 5 \\\\\\\\\\\\\\\\\\\
% Drift Path Test
t5 = 0:.1:17.3; % Length of test 5 in seconds

% Acceleration vectors
aX5 = test5(:,1)*g;
aY5 = test5(:,3)*g;
aZ5 = test5(:,2)*g;

% Initialize angle of rotation values
Roll5(1) = 0;
Pitch5(1) = 0;
Yaw5(1) = 0;

% Calculate Euler angles
for i = 1:173
 % Transformation matrix
 T = [1 sin(Roll5(i)*rad)*tan(Pitch5(i)*rad)
cos(Roll5(i)*rad)*tan(Pitch5(i)*rad); 0 cos(Roll5(i)*rad) -

64

sin(Roll5(i)*rad); 0 sin(Roll5(i)*rad)/cos(Pitch5(i)*rad)
cos(Roll5(i)*rad)/cos(Pitch5(i)*rad)];

 % Euler rotation rates
 Euler_angle = T*[test5(i,4); test5(i,6); test5(i,5)];
 Ex = Euler_angle(1);
 Ey = Euler_angle(2);
 Ez = Euler_angle(3);

 % Integrate rotation rates to get angles
 Roll5(i+1) = Ex*tOh + Roll5(i);
 Pitch5(i+1) = Ey*tOh + Pitch5(i);
 Yaw5(i+1) = Ez*tOh + Yaw5(i);
end

figure(4)

% Plot angular position vs. time
subplot(2,1,1)
plot(t5,Roll5,'-')
hold on
plot(t5,Pitch5,'-.')
plot(t5,Yaw5,':')
title('Drift Test: Angular Position vs. Time')
xlabel('Time (sec)')
ylabel('Pitch Angle (degrees)')
legend('Roll','Pitch','Yaw')

% Transfer acceleration vectors to constant reference frame
net_aX5 = aX5'.*cos(Yaw5*rad) + aY5'.*sin(Yaw5*rad);
net_aY5 = -aX5'.*sin(Yaw5*rad) + aY5'.*cos(Yaw5*rad);

% Initialize position and velocity values
pX5(1) = 0;
pY5(1) = 0;
vX5 = 0;
vY5 = 0;

% get position by double integration of acceleration
for i=2:174
 vX5 = vX5 + net_aX5(i-1)*tOs;
 vY5 = vY5 + net_aY5(i-1)*tOs;

 pX5(i) = pX5(i-1) + vX5*tOs;
 pY5(i) = pY5(i-1) + vY5*tOs;
end

% Plot track of IMU
subplot(2,1,2)
plot(pX5,pY5)
title('Drift Test: 2D XY Plot')
xlabel('X position (ft)')
ylabel('Y position (ft)')
grid

65

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Anthony Healey
Naval Postgraduate School
Monterey, California

4. Edward Thornton

Naval Postgraduate School
Monterey, California

5. Donald Brutzman

Naval Postgraduate School
Monterey, California

	
	I. INTRODUCTION TO RING LASER GYROSCOPES
	A. HISTORY OF THE GYROSCOPE
	B. HISTORY OF RING LASER GYROSCOPE
	1. Derivation of the Sagnac Effect

	C. HG1700 INTRODUCTION
	II. HARDWARE CONFIGURATIONS
	A. HONEYWELL TEST BOX CONFIGURATION
	B. C++ CONFIGURATION
	C. ORIENTATION OF IMU

	III. SOFTWARE USED TO TEST AND RUN THE HG1700 IMU
	A. HG1700 OUTPUT
	1. Flight Control Data
	2. Status Words and Inertial Data
	3. Summary of Output Message

	
	B. SOFTWARE USED TO READ HG1700 OUTPUT
	1. Test Box Software
	2. C++ Software

	IV. TESTING ON THE HG1700 IMU
	A. EXPLANATION OF TESTS
	B. ROTATION TEST
	1. MATLAB Programming for Rotation Test
	2. MATLAB Plots for Rotation Test

	C. IDLE TEST
	1. Calculating the Earth Rotation Rate
	2. MATLAB Programming for Idle Test
	3. Conclusions for Idle Tests

	D. POSITIONAL TESTING
	1. Derivations for Calculating Position
	2. MATLAB Programming for Positioning Tests
	3. MATLAB Plots for Positioning Tests
	4. Conclusions for Positioning Tests

	V. PLANS FOR IMPLEMENTATION
	VI. CONCLUSION
	LIST OF REFERENCES
	APPENDIX
	A. C++ PROGRAM DECODE4.CPP
	B. MATLAB PROGRAM IMUTEST_ROTATION.M
	C. MATLAB PROGRAM IMUTEST_IDLE##.M
	D. MATLAB PROGRAM IMUTEST_POSITION.M

	INITIAL DISTRIBUTION LIST

